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ABSTRACT

In this paper~we developan algorithmic method for transforming

quasilinear partial differential equations of the forrlut = g(U)Unx +

~m mf(u *x-tU(nl)x), Umx Emu/2xm, where dg/du 0, into semilinear

equations (i.e., equations of the above form with g(u) = 1). -This

crucially involves the use of hodograph transformations (i.e., trans-

formations which involve the interchange of dependent and independent

variables). Furthermore, we find the most general quasilinear equation

of the above form which can be mapped via a hodograph transformation

to a semjlinpa-fQrm

This algorithm provides a method for establishing whether a given

quasilinear equation is linearizable; i.e., is solvable in terms of

either a linear partial differential equation or of a linear integral

equation. In particular, we use this method to show how the Painleve,

tests may be applied to quasilinear equations. This appears to resolve

the problem that solutions of linearizable quasilirear partial differ-

ential equations, such as the Harry-Dym equation ut  = (u
" 1 2 ) "-

typically have movable fractional powers and so do not directly pass

the Painlev6 tests.
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I. INTRODUCTION

Recently there has been considerable interest in the solution of

certain physically significant, nonlinear partial differential equations.

It turns out that the solutions of these equations may be expressed in

terms of the solution of linear equations (either linear integral equations

or linear partial differential equations). In 1967, Gardner, Greene,

Kruskal and Miura [1] associated the solution of the Korteweg-de Vries

(KdV) equation with the time independent Schrodinger equation and showed,

using ideas from the theory of direct and inverse scattering, that

the Cauchy problem for the KdV equation (for initial data on the line

which decays sufficiently rapidly), could be solved in terms of the

solution of a linear integral equation. Subsequently, this novelty

was developed into a new method of mathematical physics, often referred

to as the inverse scattering transform (I.S.T.), which has led to the

solution of numerous evolution equations (see, for example, [2] for

details). These nonlinear evolution equations have arisen in many

branches of physics including water waves, stratified fluids, plasma

physics, statistical mechanics and quantum field theory. Previous

to the KdV equation, the first physically interesting nonlinear partial

differential equation which was solied in terms of a linear partial

differential equation was BurgerS' equation

ut = uxx + 2uu , (1.1)

which was mapped into the linear heat equation via the Cole-Hopf trans-

formation [3].
%'
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Partial differential equations which can either be solved by

an appropriate I.S.T. scheme or by a transformation to a linear partial

differential equation are said to be linearizable. The most well known

linearizable partial differential equations are of the form

.- n

ut =un + f(u,u ...,u( )), n > 2, unx -n (1.2)u Unx -- ,nIxnx 9

Definition 1.1 A partial differential equation is said to be semilinear

if it is of the form (1.2).

There also exist linearizable equations of the form

ut = 9(u)Unx + f(u,u ... U(nl)x) n > 2, (1.3)

where dg/du j 0.

Definition 1.2 A partial differential equation is said to be quasilinear

if it is of the form (1.3).

Well known examples of quasilinear linearizable equations

include an equation studied in [4],

u = (u-2u) + .u-2u , (1.4)
wt x X cy

where is an arbitrary constant and the Harry-Dymr equation (Kruskal L5])
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ut = 2(u- 11 2) (xxx

which is known to be linearizable [6] (see also [2b]).

Fokas and Yortsos [4] considered second order quasilinear

partial differential equations using the symmetry approach of

Fokas [7]. They showed that the most general equation of the form

ut = g(u)u x + f(u,u x), (1.6)

which is linearizable is the equivalent to the equation (1.4), which

via an extended hodograph transformation is mapped to the Burgers' equation.

Similarly, it is known that the Harry-Dym equation (1.5) can be trans-

formed either into the KdV equation (see, for example, [2b] or [8]), or

the MKdV equation (see, for example, Kawamoto [9]). The

notions of equivalence and hodograph transformations are defined below:

Definition 1.3 Two partial differential equations are equivalent if one

can be obtained from the other by a transformation involving the dependent

variables u = (v) and/or the introduction of a potential variable

(u : v or u = v).

For example, the Burgers' equation is equivalent to the heat equation.

Definition 1.4 A pure hodograph transformation is a transformation

of the form

|"



= t, = u(x,t). (1.7) -

Definition 1.5 An extended hodograph transformation is a transformation

of the form

t, f fX(u(x',t))dx'. (1.8)

The above discussion naturally motivates the following questions:

Equation (1.4) is a quasilinear analogue, via an extended hodograph

transformation, of Burgers' equation. Similarly, the Harry-Dym equation

(1.5) is a quasilinear analogue of the MKdV equation.

i) Is there an algorithmic method of finding a quasilinear

analogue of any semilinear equation?

ii) Is the associated quasilinear equation unique?

iii) Conversely, given a quasilinear equation, is there an

algorithmic method of finding whether it can be mapped

to a semilinear equation as well as finding this semi-

linear equation?

b

In this paper we consider the above questions for semilinear and

quasilinear equations (1.2) and (1.3) respectively. The answer to

question i) is affirmative. Also, the associated quasilinear equation

is unique, since extended and pure hodograph transformations yield

equivalent quasilinear equations. Furthermore, we find the most general

equation of the form (1.3) which can be mapped via an extended hodograph

transformation to a semilinear form.

%..
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The above results are of some interest in establishing whether

an equation is a candidate for linearization. Suppose that one is

interested in investigating whether a given quasilinear equation is

linearizable. We propose the following algorithmic procedure (see QIII);

I. Put the equation into its potential canonical form

v= v- Vnx + H(vx v ... v( ), (1.9)xtVxVn xx' (n-l)x

by using the transformation vx = 9-1/n(u).

2. Apply a pure hodograph transformation to equation (1.9). If equation

(1.9) is transformable to a semilinear equation, it will become

,It = 7n + H( n  ,r 2'C, ... , 1~ lx (1.10)

3. Investigate whether equation (1.10) is linearizable. This is

easier than investigating whether (1.2) is linearizable directly.

The reason for this is twofold. First, for at least third order

equations there is a complete classification of all linearizable

equations. Within equivalence, there exist only six such equations

(see below). Hence one needs to study if there exists an equi-

valence transformation to map equation (1.10) with n = 3, to one

of these six canonical equations. Second, for equations with

n > 4 one may investigate the question of linearization via the

Painlev6 test. The Painlev6 approach is reviewed below. Here we

only point out that quasilinear partial differential equations do

not appear suitable for applying the Painleve test. Ramani,
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Dorizzi and Grammaticos [10] (see also [11] and the references

therein) introduced the notion of "weak-Painlev6" in order to deal

with equations such as the Harry-Dym equation which are linearizable

after a change of variables. However, the higher KdV equation

ut = uxxx + U3 ux although not thought to be linearizable (since it

has only three independent polynomial conservation laws of a certain

type [12]),is also "weak-Painleve"' [13]. Therefore the "weak-Painleve"

concept does not distinguish between a linearizable and a non

linearizable equation.

We point out that one often finds in the literature claims of "new"

third order linearizable equations. These equations, using the notion of

equivalence can be mapped via a pure hodograph transformation to one of

the six canonical equations mentioned above.

The above algorithmic approach is useful provided that a given

linearizable quasilinear equation can be mapped to a semilinear form.

The above approach will fail if there exist linearizable quasilinear

equations which can not be mapped to a semilinear from. It is shown

in [4] that such equations do not exist for at least n = 2. The

question of whether such equations exist for n > 3 remains open. Important

results in this direction can be found in [43].

IA. Classification of third order equations

Svinolupov, Sokolov and Yamilov [14] have claimed that the

only third order semilinear partial differential equations which are

linearizable are equivalent to the following six equations:
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Ut U + yu, (1.11)
t xxx x

ut =Uxxx + x + x 11)

U + uU + e u , (1 .13)
t Uxxx Ux x

3 2 2 3 2

ut =xx x -2 xUxx + u - P(u)(ux + ")u + fu (1

U 3 2 -1 + tu - 3P(u)u 2 + yu ,(.6)

t 2xxx 2Uxxx x x x

where

dP 2 4 3 (1.17)
(U)

ond , , y , g anJ £ are arbitrary constants. Equation (1.11)

is a linear partial differential equation which is sometimes referred

to as the Airy equation in moving coordinates; equation (1.12) is the

KdV equation, which was the first equation to be solved by I.S.T.[I];

equation (1.13) is the Modified KdV (MKdV) equation, also solvable by

I.S.T. [15]; equation (1.14) is the Calogero-Deqasperis-Fokas (CDF)

equation [7],[16],equations (1.15) and 1.16) are as yet unnamed and

involve the Weierstrass elliptic function Pu,. me note that the CDF

equation can be put into ratiora! t,,T: .e

L
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= v v + ( v2  + Sv 2  + )v .(1.8) 2
xxx  2 v /v)x  (I)v x •

Alternatively, provided that = -2y (if 0 t , then one

can rescale and translate the variables in (1.14) so that this holds),

letq = sinh(u/2) to obtain

3 2 2 2
qt = qxxx - 2[qqx/(l +  q2)Ix + qqx" (1.19)

(Equation (1.19) is sometimes referred to as the deformed MKdV equation [17]
S

or the modified MKdV [18], though itis equivalent to the CDF equation.)

We also note that both equations (1.15) and (1.16) can be put into

rational form by the substitution v = P(u).

IB. The Painlev6 Tests

The Painlev6 ODE test, as formulated by Ablowitz, Ramani and

Segur [19] and Hastings and McLeod [20] asserts that every ordinary

differential equation which arises as a similarity reduction of a

partial differential equation solvable by inverse scattering is of

Painlev6 type; that is,it has no movable singularities except poles,

perhaps after a transformation of variables. Ablowitz, Ramani and

Segur [19b] and McLeod and Olver [21] have given proofs of the Painleve

ODE test under certain restrictions. Subsequently, Weiss, Tabor and

Carnevale [22] developed the Painlev6 POE test as a method of applying

the Painleve ODE test directly to a given partial differential equation,

without having to study any similarity reductions (which may not exist 4

Ada- ".
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anyway). A partial differential equation is said to possess the

Painleve property if its solutions are "single-valued" in the

neighborhood of noncharacteristic movable singularity manifolds.

These Painlev6 tests have proved to be a useful criterion for the

identification of linearizable partial differential equations. The

method introduced by Weiss, Tabor and Carnevale (with simplifications

due to Kruskal [23]), involves seekinq solutions of a given partial

differential equation in the form

u(x,t) = P x,t)j U (t)"J(x,t),(1 2 a

02a

with

s(x,t) x + f(t), (l.20b)

where f(t) is an arbitrary, analytic function of t and u.(t), j 0,1,2,...,

are analytic functions of t, in the neighborhood of a noncharacteristic

movable singularity manifold defined by = . Essentially, if a

given partial differential equation possesses solutions of the form

(1.20) where p is an integer and with the requisite number of arbitrary

functions as required by the Cauchy-Kowalevski theorem, then the partial

differential equation is said to pass the Painlev6 PDE test.

However, the application of the Painleve tests to quasilinear

partial differential equations is not as straightforward. For example,

consider the Harry-Dyn equation (Kruskal [5])
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= 2(u- 1 1 2) x , (1.21)
uxxx

which is known to be linearizable [6] (see also [2b]). Then (1.21)

does not directly (i.e., without a transformation of variables) pass

the Painleve PDE test since it has an expansion of the form

u(x,t) 4/3(xt) -uj(t ) l/3 (x,t), (1.22)
j=O

with s(x,t) = x + f(t), in the neighborhood of a noncharacteristic

movable singularity manifold defined by = 0 and so has movable cube

roots (see Weiss [24] for details). If an equation has an expansion

of the form

u~ t = p/r( ,j/ru x t x t) j=o Uj(t): (xlt), (1.23)

where p and r are integers determined from the leading order analysis,

then the equation is said to be "weak-Painleve". However, as was
3

pointed out earlier, the non linearizable equation ut = u + u u

is also weak-Painleve.

II. SECOND AND THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

An extended hodograph transformation comprises of the change

of variables u - v = -(u(xt)) followed by a pure hodograph trans-

formation, and therefore these transformations are simply related.

We first consider the pure hodograph transformation in more detail.

- ,." -. '' -_'_ , . , , , ' _ ." .-,.-.- .- . .- .- , - .-. ., _,, . ... .- - -%



Let

t tT , X~ ,T (2.1)

Then using (1.7),

= x + T = u , (2.2a)
X XT X.

+~ + = u + ~ (2. 2b)t t t T t ~. T

Therefore the Jacobian of this transformation is u.X Similarly for

the inverse transformation (2.1) we have

X= +7 +t = (2.3a)
-,x &t

X + t + (2.3b)

Under a pure hodograph transformation, derivatives transform as follows

u =,ut = -n ,(2.4a)

u =~ .
3  

, u -4 + 3 - -2, 5  (2.4b)

or inversely

=- u u (2.5a)

-u u , -u u +3u u (2.5b)]

-pxxx x
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Therefore the linear partial differential equation

ut  = (2.6)

under a pure hodograph transforms to

-3 3 n 2-4T - . (2.7)

Note that if one applies a pure hodograph transformation to a partial

differential equation in potential form (that is an equation which does

not depend explicitly on the dependent variable) which also does not

depend explicitly on the independent variables, then the resulting

equation is also in potential form with no explicit dependence on the

independent variables. Therefore, before applying a pure hodograph

t-ansformation to a given partial differential equation, we shall

put the equation into canonical potential form.

We now consider second order quasilinear partial differential

equations.

IIA. SECOND ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

The most general second order, quasilinear partial differential

equation of the form

ut g(u)u x + f(uux), (2.8)

with dg/du 0, which may be transformed via an extended hodograph

. ' W, . .' -.. ,. ,. ., ...-. .- .... ...-....... ...- ,..... .... . . . .•



~I

transformation to a semilinear partial differential equation of the

form

S =S + G(SS (2.9)

is given by

ut =g(U)Ubxx -2 x +  b((U)Ux, 2.10)

where d/du, and g(u) and b(u) are arbitrary functions which are

twice and once differentiable, respectively. Furthermore, equation

(2.9) is equivalent to the equation L

-2v + H(Vx (2.11)
Vt :x xx H

which is transformed via a pure hodograph transformation to

H( (2.12)

Proof

In equation (2.8) we make the transformation

T t, ; : F( x, t) , ( ) u( x t)

then (2.8) becomes

.-
--- -

.-"-
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g~uF ~ (gF~ Ft + f( F)

Now cnoose F such that

2 112
gF~ 1, i.e., F g (2.13a)

xx

Ft =A(u,u ), (2. 13b) P

where A~~ ssuch that the compatibility of (2.13) (i.e., F F
A x~)i xt tx

implies (2.8). Therefore

-1 -3/2 gu Au + A u (2.14)

where Au Ab u A u = A/u using (2.8)
ux 4x 4

-1 -1/2 gU + gf(uu )=A u + A U , (2.15)
u9xxx u x Uxx xU

Equating coefficients of u to zero in (2.15), it is seen that

A(u,u 1 -12 u +a(u), (2.16)
jg g

where a(u) is an arbitrary function. Also from (2.15) Ui

A u -1 -3/2 (2.1f)u
u x x.
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Therefore, from equations (2.16) and (2.17) we find that

ffg'= ' 2 x + b'(u)u x (Sf(U'Ux) : g' -2 x

where b(u) is an arbitrary function. Hence, it follows that the most

general equation of the form (2.17) which is transformed via the

extended hodograph transformation

T = t, g (u(x',t))dx '

into a semilinear partial differential equation has the form

ut g(u)uxx g' - 2 )Ux + b'(u)ux' (2.19)

We now wish to transform (2.19) into semilinear form. Our algorithm

is to put (2.19) into a canonical (potential form) partial differential

equation and then apply a pure hodograph transformation to convert the

canonical equation into a semilinear equation. In (2.19) we make the

transformation g(u) = v -2 and obtain

2
v v v + H(V (2.20)t Vx xx

where H is expressible in terms of b. Equation (2.20) is the

canonical equation (since all equations of the form (2.19) are equivalent

to (2.20)). It is essential that the ratio of the coefficients of

S- and v in (2.20) is v 2 in order that the quasilinear equation isVx t n

transformed into a semilinear one via a pure hodograph transformation. k
%
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Finally, applying a pure hodograph transformation to (2.20), we obtain

n - - m~H( ),(2.21)

as required.

Therefore in summary, in order to determine which equations

of the form

ut g(u)uxx + f(uUx), (2.22)

where uu 0 and f(u,u ) is a rational function of u and udu x x

are linearizable, it is sufficient to consider the canonical equation

v 2v + H(vx ), (2.23) "

where H(vx) is a rational function of v. Applying a pure hodograph

transformation to (2.23) yields

This can be put into non-potential form by making the transformation

w = '. ,hence

w w. +h(w)w. , (2.24)

Bo.. i-.
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where

d

It is shown in Appendix A that equation (2.24) can pass the Painleve

tests if and only if

h(w) : 2t w +
'I]

where -A and E are constants. Hence from (2.25), I
H(w) = -l + (2.26)

Therefore, this suggests that the most general partial differential

equation of the form (2.22) which is linearizable is equivalent to

the equation

-2 -2ut (u u) + ,u u. (2.27)

We use the word "suggests" because we are aware that the Painleve tests

have not yet been proven, though there is considerable evidence suggesting

their validity. This completes the "proof" of the result first obtained
C. by Fokas and Yortsos [4]. However, the method in the present paper is

somewhat simpler than that used in [4] and is easily generalizable to

higher order quasilinfar partiel differential equations.

.'|

."
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IIB. THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

Proposition 2.2

The most general third order, quasilinear partial differential

equation of the form

ut  g(u)ux U + f(u,u x  ), 0O (2.28)

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

S = S_- G(S,S,,S ), (2.29)

is given by

ut  g(u)uxx x + Bu(u,uX)u x +B (u,ux)UXX

+ _2 _ _L)B(u,u )uX ( -)u u.
9 3g x 9g 32

where B = 5B/3u, Bu = qB/ u , prime denotes derivative with

respect to u, and g(u) and B(u,u ) are arbitrary functions. Furthermore,

equation (2.29) is equivalent to the equation

-3
V t  v V + H(V v " 2.31)

X XXX X xx

which is transtormed via a pure hodograph transformation to

16
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-1 -3
n- ,H(n. , rr ). (2.32)

T

Proof.

In equation (2.28) we make the transformation

T = t, = F(x,t), '( ,T) u(x,t),

then (2.28) becomes

- g(u)F 3 , .+ 3gF xF x + (gF - F t)-x x . xx ,- gxxx t

+ f(, 9 F2' + F 2).

Now choose F such that

1, i.e., F g 1/3, (2.33a)

Ft A(u,u,u××), (2.33b)

where A(u,uu) is such that the compatibility of (2.33) (i.e.,

Fxt F t) implies (2.28). Therefore

1 -4/3 A +A u u
-J g lut Auu x +Au uxx A u (xx

x xx

or using (2.28)



20

1 -1/3 1 g-4/3gfu l

- -g g x -x fx~~

~Au +AU uA) AU U A2.34)

By collecting terms and equating the coe~ficient of u to zero in

(2.34), it is seen that

1 -1/3
A(u,u ,u - g u +(2.35)

where a(u,u) is an arbitrary function. Also

A~ u u + A Uu = 39 g~ uxu,uxtux) (2.36)
x

Therefore, from equations (2.35) and (2.36) we find that%

3( 4 / 3 /gj)Ea u au +(g Lu
f(u,u ,uxx -3g-x x 3 x Uxx'

=(u,u )u + B (u'u )u +( - L)(Uu u
u xx u x xx 3g x x

(n9 3 x-)u u (2.37)

where B(u,u -3(g 4/ ,a~ Hence, it follows that the

most general equation of the form (2.36) which is transformed via the

extended hodograph transformation I
t 1/3

- (u(x't)dx'

* I., -J

%"
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into a semilinear partial differential equation has the form

ut g(u)u xxx + B (uux)u -B (U,ux)Uxx
X

+( --- L)B(uu)u +( L-- I (2.38)
- 3g x 3 Uxxx(

-3
In (2.38), make the transformation g(u) = vx , then we obtain

V v- 3xv + H(vx  ) (2.39)
wt H V X s x x

where H(V xx) is expressible in terms of B(u,u x) and g(u). Therefore,

(2.39) is the canonical equation (again, since all equations of the

form (2.38) are equivalent to (2.39)). Finally, applying a pure

hodograph transformation to (2.39), we obtain

- -3
- rH , - -., ) ,(2.4C)

as required.

Thus proposition 2.2 provides an algorithmic method of transforming

the quasilinear partial differential equation

ut g u)u x + f(u,ux,,u ) (2.41a)

where

N.

"'.

#t -'.''.-'. . ''.' '.'. .'._. .' .' '..'.'. . ' '.'. . .' ... . .'.-..''. .. .'.'. ..' ".-.".. . . ,. -- -,- -.-.,..- -- - -
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f ( u ' u ' u g) = + B ( u , u x) u + B ( u , u ) u
x

+ ( - ~)B(u,u )u ( gr - U (2.41b)
g 3g x g 3 x x

into a semilinear partial differential equation; i.e.

1. Put equation (2.41) into the potential canonical form by making the

transformation v g-1/3(u); hence we obtain

3v + H(vxv ) (2.42)

Xp

2. Apply a pure hodograph transformation to equation (2.42); hence we

obtain

- - - r - 3 ). (2.43)

3. The resulting partial differential equation will be in potential

form and usually one first puts the equation into nonpotential

form by making the transformation w = 7. Furthermore, if the

resulting semilinear partial differential equation is linearizable,

then it can be expected to be equivalent to one of the six partial

differential equations given by Svinolupov, Sokolov and Yamilov

[14], which are listed in (equations (I.)-(I.16)).

Therefore it may be necessary to seek a change of dependent variables

w (O) and write the resulting 
equation 

in non-potential 
form.

An alternative approach is to apply the Painleve tests directly

+,'W,.' '. v , - .' '-''w '= :.("Q) and- 
-" " '. 

wr te t e.eul i g.qat o n non-potential 
fr. . " . . . . . .
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on the semilinear equation, provided that the nonlinear evolution

equation is in rational form (i.e., H in (2.43) is a rational

function of its arguments).

There are two remarks we wish to make about the above procedure.

1. It is important to first put equation (2.41) into canonical form

by making the transformation v = g- /3(u) before applying the pure
x

hodograph transformation (otherwise the partial differential equation

will remain quasilinear). To demonstrate this, consider the Harry-

Dym equation

ut  (u /2)xxx (2.44)

First put (2.44) into potential form by letting vx  u, then

v v 1 2 ) x  
( 2 .4 5 )

Applying a pure hodograph transformation to (2.45) gives

which is just the same equation (i.e., the potential Harry-Dym

equation is invariant under a pure hodograph transformation).

2. If the quasilinear partial differential equation is not in the special



* 24

form (2.41) then the transformation v = g- /3(u) yields either a

higher order or nonlocal partial differential equation. For

example, consider the partial differential equation

-3
ut = u3Uxxx* (2.46)

Then after making the transformation v = u we obtain

xt x xxxx,

or

= -3 +fx4
vt x xxx x xx xxx

By considering several examples, we shall now demonstrate how the procedure

developed above can be applied to determining whether a given third

order quasilinear partial differential equation might be linearizable.

In these examples, we apply the Painleve tests to the semilinear equation

to determine necessary conditions for the equation to be possibly

linearizable. Furthermore, we show that when these conditions are

satisfied, then the equation is equivalent to a 11rearizable equation

by exhibiting the requisite transformation. Since we are using the

Painlev6 tests in these examples to exclude several possibilities,

when we conclude below that an equation is "nonlinearizable" (because

the above conditions are not satisfied), we mean "nonlinearizable,

subject to the validity of the Painlev6 tests', i.e., in these cases

the equation is 'probably nonlinearizable.'



25

Exetnple 2.1

In this example we determine for which values of the constant

is the equation

3 22 4 )
= U Uxxx + t U2Ux (2.47)

linearizable. Equation (2.47) was considered by Kawamoto [9], where

we note that if , = 0, then (2.47) is equivalent to the Harry-Dym

equation vt + 2(v-1/2)xx x = 0 (set u -1/2). In order to set (2.47)

in canonical form we make the transformation v= 1/u, hence

-3v - + 3)v - 4  
.2 248)

Applying a pure hodograph transformation to (2.48) gives

1 - + l( - 2 -1 (2.49)

We now apply a sequence of transformations to (2.49). First we put

(2.49) into non-potential form by letting w - , hence

21

w.__ + -(. -3)(w2/w)_. (2.50)

Then, in order to determine whether (2.50) is equivalent to one of the I
six linearizable equations given by Svinolupov, Sokolov and Yamilov

,14] (equations l.1l)-(l.16)), we let Q In w, hence C

C,
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+ -1) (2.51)

Finally, putting (2.51) into non-potential form

q-r q + (qc , + q2 -l )q2q . (2.52)

T +, % q

(additionally it is simpler to apply Painlev6 analysis on equation

(2.52) rather than on (2.50)). It is shown in Appendix B that equation

(2.52) can pass the Painlev6 tests only if either a = 0, = 3/2 or

3. If a = 0, then (2.52) is the MKdV equation, which is known to

be linearizable [22]. If a = 3/2 or a = 3 (after rescaling q), then

(2.52) is the second equation in the Burgers' hierarchy

q =q + 3(qq + q2 ) + 3 q20_ (2.53)
-44

(Olver [25]), which is reduced by the Cole-Hopf transformation

q = 2(ln u), = 2u,/u,
T

to the linear partial differential equation

(i.e., equation (2.53) is equivalent to (1.11)). Therefore we conclude

that equation (2.47) is l inearizable only for these three values of
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Example 2.2

Consider the equation

ut = [Ux(l + u2 )-3/21xx + 2u x(U + u2 F 3/2, (2.54)

where ciis a constant. Note that if a = 0, then (2.54) is an equation

which was shown to be linearizable by Wadati, Konno and Ichikawa [6a].

To put (2.54) into canonical form we make the transformation

v =(0 + u2 )1/2, hence we obtain

-=-3 3 -4v 2F~ 2 2 ] 2
vt v v - 2 - xv x [(I - 2v. )(l - 2 v . 2  (2.55)t x xxx x x-x x)- x

Applying a pure hodograph transformation to (2.55) gives

S3 +3

;7 2 l - 2

which has the non-potential form (w

w . w- + 3aw 2w + 3[ww2 /(1 - w2 )] . (2.56)

Equation (2.56) is equivalent to equation (1.19) (after rescaling the

variables), which is known as the 'deformed MKdV' equation [17] or

1% modified MKdV' equation [18] and as shown in :1, is equivalent to the

CDF equation (1.14) via the transformation w =  cosh'q ? ,.
, Hence

we obtain

, % %,
-,: ", ?."-,1.1 " ".Y '. .,,>...,. ',-' '<'..'.-- -- ;','.. .',." ,.-- . -.- _; .._ d ..-.-.
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or

q, q, I 3 .3 te q -2,e-qq-q = q - " 3 s 0(). (2.58)

wheref then (2.57)r t i s nte potential MKdV equation, while if w i,

then (2.57) is toe CDF equation. therefore equation (2.54) is r
linearizable for ail values of . ,b

Example 2.3

t x xx xx x ,

where f is a rational function and prime denotes differentiation with

respect to the argument. The objective is to determine for which

choices of f is (2.58) linearizable (note that if f' 0 , then (2.58) .

3 2 -1 f.

which has the non-potential form (w

%%

makig th trnsfomaton v : u
I 2 ",

henc weobtan i

x.

p\ ,,5d ~5J *~ ~ - ~S-3 v k ~ ~ S ~ -3 v *~S .% 555~ *. 1 5 ~ S5 % 4 v 24S ? S5 .%f(Vx ) f~ ~ (2 59 "
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W, (w /W), - g(W)w, \2. 60)

where g(w): w f(l/w). It can be shown that (2.60) can pass the

Painleve tests if and only if

3 -I

g(w) 'Xw +.w+yw1 , (2.61)

hence

-2 2
f(w) =)w - + + yw 2

, (2.62)

where a, and -f are arbitrary constants (see Appendix C for details).

Note that equation (2.60) with g(w) as given by (2.61) is just

equation (1.18), which is equivalent to the CDF equation (1.14) if

either :x A 0 or -f 0 (let w = eU 2); if a= - = 0 and q = w/w, then

q satisfies the MKdV equation, hence equation (2.60) with g(w) as

given by (2.61) is linearizable. Therefore, we conclude that the most

general equation of the form (2.58) which is linearizable is

Ut + 2(u- /2)Xxx + 2u/2ux -uu3/2ux 0. (2.63

I1. HIGHER ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS.

The method developed for second and third order quasilinear partial

differential equations can easily be extended to higher order equations.

Proposition 3.1

The most general quasilinear partial differential equation of

the form

-, ,'"t.
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g(u)u f(u uS...u(]) u _u d 3ut gU)Un ' x (n-l )x nx n J U 0(.

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

T + G(S,S S (3.2)
S Sn .. . . n-l)() (3

is given by

t g(u)unx + (g _ n+__ln !)B(Uu )U

n-I
+ Bu( u +tgg" -n-)Ux u  (3.3)

+ Bu x r 3 r-)x rx n x (n-l)x'
r=2

where prime denotes derivative with respect to u, and g(u) and .

(uuI ..... Un_)) are arbitrary functions. Furthermore, equation

(3.2) is equivalent to the equation

.'

%'

v v-n v H(vv ..... v ) (3.4)
t Vx nx xVxx (n-l)x.

,1,

which is transformed via a pure hodograph transformation to

It n + H( ... . ..

,%.

,,, .-,-." ,, -. o" ". .,., .-.',.-.%..._-', ,-"-"-'" -'-" .--.. " %. ... . . . . . . . .. . . . . . .-..-..-... ... "............. . . . . . ....... ... - *• .. ',-"
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Proof -

The proof is analogous to those for Propositions 2.1 and 2.2

above and so we shall only sketch an outline. In equation (3.1) we

make the transformation

and choose F such thattiN

g F n -1, ie. Fx - /n,(36x x 36

Ft A(u,u . . .,u )(3.7)x (n-l)x

where A(u~ux .**,unlx is such that the compatibility of (3.6),(3.7), i.e.

F = F ) implies (3.1). Therefore
tt x

I -1/ I -(n'l/n,
nxxx nf uu (n-l)x

n

A u x+ Z A u rx(3.8)

r=2 (-)

Hence

1 -(n.1 )/n, 9~l)

~B(u,u.... ()i (3.9)

(n-6 x

%J
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where B(u,u x, ... . ) is an arbitrary function. Therefore, from

equation (3.9) we find that

f( Uu -...,U n-l = (g I-. . )u

n-i

+Bu + Z B u + U 3.10)
u x u(r-l)x rx n x (n-l)x'

r:2

Hence, it follows that the most general equation of the form (3.10)

which is transformed via an extended hodograph transformation

into a semilinear partial differential equation has the form (3.3)

as required. Equation (3.4) is obtained from (3.3) by making

the transformation vx = g-/n(u), where H(v, ... IV()) is

expressible in terms of B(u,u x .. U and g(u) and therefore is

the canonical equation. Finally, equation (3.5) is obtained by applying

a pure hodograph transformation to (3.12).

Proposition 3.1 provides an algorithmic method of transforming

the general quasilinear partial differential equation

= g(u)u0n + f(u'ux ... ,U(n l)x) (3.11a)

where

f(u ux, .. U(n l)x) I ( -,' n+l '-)B(uu ,... U )u' 9" n g (n-2)x x

• . n-l

- urx 9 x)uU , (3.11b)
u ux r Bu(r-l)x g - (n-l)xn a i r r=2

into a semilinear partial differential equat.ion as follows:
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1. Put equation (3.11) into the potential canonical form by making

the transformation v g l/n(u); hence we obtain

v -n + H(v .v (3.12)
vt Vx nx x Vxx '  *, (n-l)x

2. Apply a pure hodograph transformation to equation (3.12); hence we

obtain

= + ).(3.13)

t n (n-1

3. The resulting partial differential equation will be in potential

form and usually one first puts the equation into nonpotential form

by making the transformation w = . It may also be convenient to

seek a change of dependent variables w (Q) (and then write the

resulting equation in non-potential form if necessary) and then apply

the Painleve tests to the semilinear equation to determine if it

is possibly linearizable. (For fourth and higher order semilinear

partial differential equations, there is, at present, no equivalent

theorem to the one given by Svinolupov, Sokolov and Yamilov [14]
f

:" for third order equations. )

IBLI
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Example 3.1

In this example we consider the equation

ut U U5x, (3.14)

which was shown by Konopelchenko and Dubrovsky [26] to be the

compatibility condition of the linear operators

L=u u3/2-3
x

M=9u 5/ 2 -5  45 3/2 4 3/2 53 +

x 2 xx + Uxx x ti

where 3 /'x, t -I/3t (ie LM - ML 0 if and only if u satisfies

(3.13))

We first put (3.14) into canonical form by making the trans-

-112
formation v = u hence we obtain

5x - lOv6 + v 2 7 2 -45v
8v .

x 5x V2x 4x 3x+ v V2 3x x xx

Applying a pure hodograph transformation to the above equation we obtain

-1 2 . -2

t 5 - 2 " 4 '  5 2c" 3 - -3.15)

which has the nonpotential form

w =w 5 : 5w (ww 4  + w2 w3: lOw (w-w 3  + ww,

- low 3w3w (3.16)', _ :- " "'V
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we now let Q = In w, hence

Q , Q5  + 5Q Q3 2 - 5Q-Q + Q5
2- E 5Q3

which has the nonpotential form

qT = q5T + 5q-q 37 
+ 5q 2  5q 3 20qcq 2: - 5q + 5q (3.17)

'2,

Equation (3.17) can be transformed into two linearizable fifth order

equations. Fordy and Gibbons [27] show that if q satisfies (3.17)

and u and v are defined by the Miura transformations

2 1 2
u -q - q , v q - !q , (3.18)

then u and v respectively satisfy the Sawada-Kotera equation [28]

(sometimes referred to as the Caudrey-Dodd-Gibbon equation [29])

u- u5c + 5uu + 5uru2r + 5u2 u: ,  (3.19)

and the Kaup equation [30] (sometimes referred to as the Kuperschmidt

equation, cf. [27])

2
v = v + v 25v-v + 20v v (3.20)

Both equations (3.19) and (3.20) are known to be linearizable, see [31]

and [301 respectively. This shows that equation (3.14) is the quasi-
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linear analogue of equation (3.17), which is linearizable and so (3.14

should not be regarded as a "new" linearizable fifth order equation.

Example 3.2

The second equation in the Harry-Dym hierarchy is given by

3 12

ut = u 3[u(uu -t [(Uxx 2x xxx

Su5 + 5 u4 (uxu  + u u + u2 u
u U5  x 4x xx 3x 2 x 3x (3.21)

(see [2b] or [32]). We first put (3.21) into canonical form by making

the transformation v = u , hence we obtain

,.

-5v  5V -3v 6..
vt Vx 5x - 5 (4v2xv4x )3v3 )

105 -7 2 315 -8 4 (3.22)2 Vx V2xV3x 8 x xx.

Applying a pure hodograph transformation to (3.22) gives

-1 5 2
T 5 2 ' 2 ,

25 2 -2 45 - (3.23)

24

',4
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which has the nonpotential form

5w1w +22 35 -2 2
w- w - 5w 4 (wW + 2w w  + .

55 2 -2 95 -3 3 135 5 -4+ -~w -W w w w2 + -8b w w ,3.'
2 W WW2:-

As in Example 3.1 above, we now let Q In w, hence

5 2 2
Q = Q5 - 2(QQ2 + Q )+ '7 2:- 83

which has the nonpotential form

S5 3- 5 2 15
-q 5  - q lOqqq 2  - q2 3 + --q q  (3.25)

Equation (3.25) is the second equation in the MKdV hierarchy (see[25]).

This provides further evidence of the close relationship between

the Harry-Dym equation and the MKdV equation. It is well known that

the inverse scattering schemes for the MKdV equation and the Harry-Dym

equation are related through a sequence of gauge transformations which

also involve an interchange of independent and dependent variables

34] (see also [35]). Since the recursion operator for the Harry-Dym

I%

equation is well known (cf. [2b], [32], then it can be shown (Fokas

and Fuchssteiner [36]) that these recursion operators (or hereditary

symmetries in the terminology of [36]) are related by a Backlund

transforma tion.

-NOh..12
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IV. DISCUSSION

In this paper we have discussed the relationship between quasi-

linear and semilinear partial differential equations. In particular,

an algorithmic procedure was developed for finding the quasilinear

(semilinear) analogue of a given semilinear (quasilinear) equation

(if it exists). Furthermore, the associated quasilinear (semilinear)

equation is unique up to equivalence. This procedure provides a simple

algorithmic method for determining whether a given quasilinear partial

differential equation might be linearizable. Consequently, several

quasilinear partial differential equations which might appear initially

to be "new" linearizable equations are actually equivalent to the

quasilinear analogue of a semilinear equation which is known to be

integrable.

For example, Abellanas and Galindo [37] showed that the quasi-

inear equation

ut u2 + 2u + u)3i 2 Uxxx' (4.1)

where ., -, are constants, possesses a bihamiltonian structure and

hence an infinite number of nontrivial conservation laws. Note that

equation (4.1) contains as special cases bot the arry-Dyr equation

3U t  : UU X ,

and an equation considere] by Bruschu id inisco [W.-

.,...
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3/2U
t  

= UXX , •

tx xx

Applying the method developed in the present paper shows that (4.1)

is transformed into either the MKdV equation (if 0 0) or the

linear equation n. = (if 0 and r 0). (Bruschi :"d Ragnisco

[38] showed that (4.3) can be transformed via an extended hodograph

transformation to the linear equation.)

In two recent papers, Mikhailov and Shabat [39] have determined

necessary conditions for the existence of nontrivial conservation

laws for systems of equations of the form

ut A(u)u + f(uUx), (4.4)

where
u A(u,vu b(u V)

(V =  ' -(u,v) d(u~v)

f u u (U V ,U x 'V X )

(UUx = (u,VUxV x)

(This is analogous to the work of Svinolupov, Sokolov and Yamilov [14]

who also used the existence of nontrivial conservation laws as the

criterion in their determination of which third order semilinear

equations are linearizable.) In order to determine their necessary

conditions, Mikhailov and Shabat [39] first transformed the quasilinear

equation (4.4) into the semilinear canonical form

,'. ......,.---. ,-.- ., , ,' .,-< ;< 7 , . ? , , , '-j .-., ., . .... , ' ', '. ' -.._ ' . -....,_. .,. -- '.."-- "-. ,- .".-_': ".
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* -H , - H(, ,- ), 4.5)

where

\, ' 3 0 -

This transformation was achieved by first transforming (4.4) into the

form

U = ( U I U F ( U , U ) ,( 4 .7 )

where

u - FUUx (U'VUx'Vx

(so equations (4.4) and (4.7) are equivalent), and then applying an

. ~~extended hodograph transformation to .).Q

, 5,

IWe note that it would be useful to extend the method outlined in

earlier sections to quasilinear nonlinear evolution equations in two

~spatial and one temporal dimensions. Due to the prsence of more inde- ""

for

i pendent variables, there is more flexibility in the hodograph trans-

, ~ forma t i on. .

.#

¢ , ." ,, - . : -,,." 'i- - " . -f .,, " " ?.'-¢ - ' '."., . " ."where ." L ' '." ..< , .- - ' -,, '
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Finally, we make a remark regarding the application of *he Painleve

tests. These tests have proved to be a useful criterion for the ndentif1¢aYon

of linearizable (semilinear) partial differential equations; however, there

is one major restriction in their application. Since the Painleve tests

require that a linearizable partial differential equation possesses the

Painlev' property possibly after a change of variables, then one may first

have to make a change of variables before applying the tests. An open

question is: Which transformations are allowable in the application of

the Painleve tests? (i.e., which transformations does one have to check?).

We believe that pure hodograph transformations and the notion of

equivalence are useful tools in this direction. .

.

'r e 1.
% % % %
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APPENDIX A

In this appendix we show that the partial differential equation

: + h(u)u x  \A.1

where h(u) is a rational function of u can pass the Painleve tests if

and only if h(u) is a linear function of u. In (A.1) consider the

traveling wave solution u(x,t) u(z), z x-ct, where c is a constant.

Then u(z) satisfies

u + h(u)u' Icu' . (A.2

integrating yields

u + H(u) + cu A,

dH
where d- = h(u) and A is a constant. It is known that 'he only equation

of the form

where R(u) is a rational function of u, which ; , dainive type

is the Riccati equation

22

U' I 2 ] 0
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where t2' and x0 are constants (see Hille RO ] or Ince [41 ] for a

proof). Therefore (A.3) is of Painleve type if and only if H(u) is a

quadratic function of u, so necessarily

h(u) tu + , (A.4)

where Dt and are constants. If h(u) has the special form (A.4), then

equation (A.1) is either (i) equivalent to Burgers' equation if a # 0, or (ii)

a linear equation if 0 0. Hence (A.1) can pass the Painlev6 tests

if and only if h(u) is a linear function of u, as required.

APPENDIX B

In this appendix we show that the partial differential equation

qt = q (qq +q 2 1 )q 2qx (B.1)

where - is a constant, can pass the Painleve tests if and only if :t takes

one of the three values 0, 3/2, 3. We first note that if ai = 0 then

(B.1) is the MKdV equation, which is known to be linearizable [15] and

pass the Painleve PDE test [22]. Now we shall assume that -i / 0 and

we consider the time-independent solution q(x,t) y(x) of (B.1), then

y(x) satisfies

mI
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y yy + (y,)2 + - l)y 2y 0.

which can be integrated once, yielding

y'' + yy' + I -I)y = A, (B.31

where A is an arbitrary constant. Now make the transformation y = 3w/,

giving

w" + 3ww' + 9(-L -1)C 2w 3  B, (B.4)

where B = A/3. Ince [43, p332] shows that the equation

" 3

w + 3w%' w = B, (B.5)

where , and B(/ 0) are constants, is of Painleve type if and only if

= 1 (the case B : 0 is discussed below). Hence (B.4) (and hence also

(B.3)) is of Painlev6 type if and only if

9 22( - 1) = 2

- 3)( 0- ) 0. (B.6)

Tf 3/2 or x = 3 (after rescaling q by a factor of 2) then (B.1)

is the second equation in the Burger's hierarchy

qt qx (qq + q) 2 4 q 2q (B.7)

,,,,--,'. 2. , . .,, " , - '.- ' . ' . --
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(Olver [25]), which is reduced by the Cole-Hopf transformation

q 2(ln u)x = 2u /u,

to the linear partial differential equation

U = U x x x "

If B = 0 in (B.5), then there exist two choices of y such that

the equation is of Painlev type, = or, = -9. If -9, then

9 2_2 - 1) = -9r 2

i.e.,

( + 1 )( -- ) (8 .8)

is z -1 or - = 1/2 (after rescaling q by a factor of 1/2), then (8.1)

qt= qxxx (qqxx + q ) -3q

2qx"  (8.9) 1
If we seek a solution of (B.9) in the form

q(x,t) : " p  q.(t)*J(x ,t), (8.10)

wih:=x+ftin the neighborhood oftenncaaiiltcsnglrt
manifold defined by = 0, then leading order analysis shows that

,. ....................... ..".t
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p = -1 and there are two choices for qo, qo -1 and q, 2. Equating

coefficients of powers of - determines the recursion relations defining

q (t), for j - 1. For to the choice q, = -1, the resonances are -1,

3, 3 (the resonances are the values of j at which arbitrary functions

arise in the expansion (B.1O) and for each positive resonance there is

a compatibility condition which must be identically satisfied). A

double resonance indicates that the expansion (B.10) does not represent

the general solution (logarithmic terms must be introduced into the

expansion (B.1O) so that it represents the general solution). For the

choice qo = 2, the resonances are -1, 3, 6; the compatibility condition

corresponding to the resonance j = 6 is not identically satisfied which

indicates that logarithmic terms again must be introduced into the

expansion (B.1O). Therefore (B.9) does not pass the Painlev6 PDE test.

We therefore conclude that equation (B.1) can pass the Painlev6

tests if and only if takes one of the three values 0, 3/2, 3, as

required.

APPENDIX C

In this appendix we show that tne partial differential equation

3 2wt =Wxxx -2(wx/w)x + g(w)w X , (C.1)

where g(w) is a rational function, can pass the Painlev6 tests if and

only if

3I
.%

g...w).- .w 'J.'.'', ~~.*~. -I ** - .-a



where , and y are constants. First, consider the time-independent 6

solution w(x,t) = y(x), then y satisfies ,I

2Y - g(y)y'

where d/dx. Integrating (C.3) gives

5,

3 2
Y (y) /y- G(y) • A. (C.4)

t.-

dG -3 0
where - g(y) and A is a constant. Multiplying y y and integrating

again yields

2y (y') f vG(v)dv 2y B, (C.5)

where B is another constant. It is well known that the equation
b

2
(y ) 2 R(y), C.6,

where R(y) is a rational function, is of Painleve type if and only if

P(y) is a polynomial of degree not exceeding 4 (see Hille [40] or Ince [41 ]

for a proof). Hence equation (C.5) is of Painleve type if and only if

-3A -2 +B y-3 4 3 2

f v- (v)dv- 2y + B y- 4y 3 '2y

+ '1 yl 0"'"'"

,.
0

% _% JV I 1
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where 4 3 '2' I and are constants. Solving (C.7) for '.

yields

g(y) -2

g(Y): - + 2- 3 ,~ .1£

If g(y) has the special form (C.8), then equation (C.1) is equation

(.18) which is equivalent to the CDF equation and which is known to pass

the Painleve PDE test [42]. Hence we have the required result.
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